| Question | | Answer | Marks | Part Marks and Guidance | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| $\mathbf{1}$ | (a) | 1 | 1 | | |
| | (b) | | $\frac{1}{9}$ isw | 3 | Or M1 for $9^{\frac{1}{2}}$ oe
 And A1 for 9 9^{-1} |

| $\mathbf{2}$ | (a) | $8.5 \times 10^{-6}, 6.8 \times 10^{-5}, 8.6 \times 10^{5}, 5.6 \times$
 10^{8} | 2 | $\mathbf{B 1}$ for one value misplaced | ie if any one value is covered, are
 the other three in order? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | 107 to 108 or 1.07×10^{2} to 1.08×10^{2} | 2 | $\mathbf{M 1}$ for $\left(1.4 \times 10^{11}\right) \div\left(1.3 \times 10^{9}\right) \mathrm{oe}$ | |

$\mathbf{3}$	$\mathbf{(a}$	6	1			
	(b)		$\frac{1}{2}$ or equivalent fraction or 0.5	2	M1 for $\frac{1}{8^{p}}$ soi or $\sqrt[3]{8}$ soi	eg $\pm \frac{1}{8}, \pm \frac{1}{64}, \pm 2,-\frac{1}{2}, \frac{1}{\sqrt[3]{8}}, 2^{-1}$ all get $\mathbf{M 1}$

| $\mathbf{4}$ | (a | $2 \frac{11}{12}$ | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | 0.015625 isw | 1 | | |
| | (c) | 125 | 1 | Condone 125.0 | |
| | (d) | 3.458×10^{8} | 2 | B1 for 345800000 soi
 Or SC1 for 3.458×10^{8} rot | |

5	(a) (b) (c) (d)	(i) (ii) Single ruled line within overlay A1, 30-50 3 hrs 20 mins	1 1 2 $1+1$ 1	Any length M1 for any 2 points plotted or implied by eg line through $(0,0)$ and $(1,55)$ If 0 scored $\mathbf{M} 1$ for 330 or 290 Allow anything (and any format) from 3 h 10 m to 3 h 30 m O Or FT their crossing point ± 2 small squares, 12 mins	Line, if it were to be extended, must stay within tramlines. $1 / 2$ square tolerance Condone 3:1(0) but not 3.1, however 3.2 to 3.5 are in range so OK If lines (nearly) parallel allow the mark for 'No crossing point'. oe

| $\mathbf{6}$ | (a) | 9 | $\mathbf{1}$ | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | 2.56 to 2.6×10^{8} | $\mathbf{2}$ | B1 for 256000000 to 260000000 oe
 seen | |

| $\mathbf{7}$ | (a) | 1875 | $\mathbf{1}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | 13.88 to 14 | $\mathbf{2}$ | M1 for evidence of at least 2 values of t
 substituted. | |

8	(a)	$9 a^{6} b^{8}$ final answer	3	B1 for each of $9, a^{6}$ and b^{8} where final answer is in correct form Or SC1 for incorrect form with at least one of $9, a^{6}$ and b^{8} correct	eg $9 a^{6}+b^{8}$ scores SC1
	(b)	6 nfww	3	B2 if 4 and (-2) seen Or B1 if 4 or (-2) seen	As answers to $f(3)$ and $f(1)$, eg $1-3=-2$ scores 0
	(c)	$\frac{1}{5} \text { or } 0.2$	2	B1 for $\frac{1}{125^{\frac{1}{3}}}$ or $\frac{1}{\sqrt[3]{125}}$ or 5^{-1} or $\sqrt[3]{125}$ or $\sqrt[3]{-125}$ or 5 or -5 or $-\frac{1}{5}$	
	(d)	$4 \sqrt{6}$ or $4 \sqrt{2} \sqrt{3}$ final answer	2	B1 for $\frac{24}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$ or better	

$\mathbf{9}$	(a	(i)	1	$\mathbf{1}$		
		(ii)	$\frac{1}{64}$	$\mathbf{2}$	$\mathbf{M 1}$ for $64,-64, \frac{1}{4^{3}},-\frac{1}{4^{3}}, \frac{1^{3}}{4},-\frac{1^{3}}{4},-\frac{1}{64}$	NB isw
	(b)	(i)	3	$\mathbf{2}$	$\mathbf{B 1}$ for $9^{\frac{1}{2}}$ or $\sqrt{ }$ seen	
	(ii)	96	$\mathbf{3}$	B1 for 144 or 12^{2} soi M1dep for their $12^{2} \times \frac{2}{3}$ oe		

| $\mathbf{1 0}$ | (a) | $4 \frac{7}{12}$ final answer | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | 3125 | 1 | | |

11	(a (b) (c)	$\begin{aligned} & 6 \mathbf{a}+6 \mathbf{b} \text { cao } \\ & 3 \mathbf{b} \text { cao } \\ & 6 \mathbf{a}+\text { their } 3 \mathbf{b} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	condone with brackets	
	(d)	$3 \mathrm{~b}-2 \mathrm{a}$	2	M1 for MC + CN	M1 implied by $\mathbf{3 b}+2 \mathbf{a}$ or an unsimplified version of the correct answer allow $\binom{3 b}{-2 a}$ for 2 marks if "form" penalised previously

12	(a)	(i)	1		
		(ii)	1		
	(b)	(i) 10	1		
	(c) r^{9}	(i)	1		

13	(a)		186000	1		
	(b)		$4.5[0 ..] \times 10^{13}$	2	M1 for correct substitution of all values into formula or for answer figs 45	For M1, condone any errors in conversion to ordinary numbers
	(c)		$c=\sqrt{\frac{E}{m}}$ or $c=\frac{\sqrt{E}}{\sqrt{m}}$ or $c=\sqrt{E \div m}$	2	B1 for correct form but with 'c $=$ ' omitted or for $c^{2}=\frac{E}{m}$	

